EC6801 WIRELESS COMMUNICATION syllabus-subject-notes-pevious-year-questions-papers-bank
OBJECTIVES: The student should be made to:
Know the characteristic of wireless channel
Learn the various cellular architectures
Understand the concepts behind various digital signaling schemes for fading channels
Be familiar the various multipath mitigation techniques
Understand the various multiple antenna systems
UNIT I WIRELESS CHANNELS 9 Large scale path loss – Path loss models: Free Space and Two-Ray models -Link Budget design – Small scale fading- Parameters of mobile multipath channels – Time dispersion parameters-Coherence bandwidth – Doppler spread & Coherence time, Fading due to Multipath time delay spread – flat fading – frequency selective fading – Fading due to Doppler spread – fast fading – slow fading.
UNIT II CELLULAR ARCHITECTURE 9 Multiple Access techniques - FDMA, TDMA, CDMA – Capacity calculations–Cellular concept- Frequency reuse - channel assignment- hand off- interference & system capacity- trunking & grade of service – Coverage and capacity improvement.
UNIT III DIGITAL SIGNALING FOR FADING CHANNELS 9 Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle – Cyclic prefix, Windowing, PAPR.
UNIT IV MULTIPATH MITIGATION TECHNIQUES 9 Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macrodiversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver,
UNIT V MULTIPLE ANTENNA TECHNIQUES 9 MIMO systems – spatial multiplexing -System model -Pre-coding - Beam forming - transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels.
OUTCOMES: At the end of the course, the student should be able to:
Characterize wireless channels
Design and implement various signaling schemes for fading channels
Design a cellular system
Compare multipath mitigation techniques and analyze their performance
Design and implement systems with transmit/receive diversity and MIMO systems and analyze their performance
TEXTBOOKS: 1. Rappaport,T.S., “Wireless communications”, Second Edition, Pearson Education, 2010. 2. Andreas.F. Molisch, “Wireless Communications”, John Wiley – India, 2006.
REFERENCES:
1. David Tse and Pramod Viswanath, “Fundamentals of Wireless Communication”, Cambridge University Press, 2005.
2. Upena Dalal, “ Wireless Communication”, Oxford University Press, 2009.
3. Van Nee, R. and Ramji Prasad, “OFDM for wireless multimedia communications”, Artech House, 2000.
OBJECTIVES: The student should be made to:
Know the characteristic of wireless channel
Learn the various cellular architectures
Understand the concepts behind various digital signaling schemes for fading channels
Be familiar the various multipath mitigation techniques
Understand the various multiple antenna systems
UNIT I WIRELESS CHANNELS 9 Large scale path loss – Path loss models: Free Space and Two-Ray models -Link Budget design – Small scale fading- Parameters of mobile multipath channels – Time dispersion parameters-Coherence bandwidth – Doppler spread & Coherence time, Fading due to Multipath time delay spread – flat fading – frequency selective fading – Fading due to Doppler spread – fast fading – slow fading.
UNIT II CELLULAR ARCHITECTURE 9 Multiple Access techniques - FDMA, TDMA, CDMA – Capacity calculations–Cellular concept- Frequency reuse - channel assignment- hand off- interference & system capacity- trunking & grade of service – Coverage and capacity improvement.
UNIT III DIGITAL SIGNALING FOR FADING CHANNELS 9 Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle – Cyclic prefix, Windowing, PAPR.
UNIT IV MULTIPATH MITIGATION TECHNIQUES 9 Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macrodiversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver,
UNIT V MULTIPLE ANTENNA TECHNIQUES 9 MIMO systems – spatial multiplexing -System model -Pre-coding - Beam forming - transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels.
OUTCOMES: At the end of the course, the student should be able to:
Characterize wireless channels
Design and implement various signaling schemes for fading channels
Design a cellular system
Compare multipath mitigation techniques and analyze their performance
Design and implement systems with transmit/receive diversity and MIMO systems and analyze their performance
TEXTBOOKS: 1. Rappaport,T.S., “Wireless communications”, Second Edition, Pearson Education, 2010. 2. Andreas.F. Molisch, “Wireless Communications”, John Wiley – India, 2006.
REFERENCES:
1. David Tse and Pramod Viswanath, “Fundamentals of Wireless Communication”, Cambridge University Press, 2005.
2. Upena Dalal, “ Wireless Communication”, Oxford University Press, 2009.
3. Van Nee, R. and Ramji Prasad, “OFDM for wireless multimedia communications”, Artech House, 2000.
No comments:
Post a Comment