Saturday, January 3, 2015

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING syllabus-subject-notes-pevious-year-questions-papers-bank

OBJECTIVES:
 To learn discrete Fourier transform and its properties
 To know the characteristics of IIR and FIR filters learn the design of infinite and finite impulse response filters for filtering undesired signals
 To understand Finite word length effects
 To study the concept of Multirate and adaptive filters

UNIT I DISCRETE FOURIER TRANSFORM 9 Discrete Signals and Systems- A Review – Introduction to DFT – Properties of DFT – Circular Convolution - Filtering methods based on DFT – FFT Algorithms –Decimation in time Algorithms, Decimation in frequency Algorithms – Use of FFT in Linear Filtering.

UNIT II IIR FILTER DESIGN 9 Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation.

UNIT III FIR FILTER DESIGN 9 Structures of FIR – Linear phase FIR filter – Fourier Series - Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency sampling techniques – Finite word length effects in digital Filters: Errors, Limit Cycle, Noise Power Spectrum.

UNIT IV FINITE WORDLENGTH EFFECTS 9 Fixed point and floating point number representations – ADC –Quantization- Truncation and Rounding errors - Quantization noise – coefficient quantization error – Product quantization error - Overflow error – Roundoff noise power - limit cycle oscillations due to product round off and overflow errors – Principle of scaling

UNIT V DSP APPLICATIONS 9 Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational factor – Adaptive Filters: Introduction, Applications of adaptive filtering to equalization.

OUTCOMES: Upon completion of the course, students will be able to
 apply DFT for the analysis of digital signals & systems
 design IIR and FIR filters
 characterize finite Word length effect on filters
 design the Multirate Filters
 apply Adaptive Filters to equalization

TEXT BOOK:
1. John G. Proakis & Dimitris G.Manolakis, “Digital Signal Processing – Principles, Algorithms & Applications”, Fourth Edition, Pearson Education / Prentice Hall, 2007.

REFERENCES:
1. Emmanuel C..Ifeachor, & Barrie.W.Jervis, “Digital Signal Processing”, Second Edition, Pearson Education / Prentice Hall, 2002.
2. Sanjit K. Mitra, “Digital Signal Processing – A Computer Based Approach”, Tata Mc Graw Hill, 2007.
3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, “Discrete-Time Signal Processing”, 8th Indian Reprint, Pearson, 2004.
4. Andreas Antoniou, “Digital Signal Processing”, Tata Mc Graw Hill, 2006.

No comments:

Post a Comment